
Tangible Query Interfaces:
Physically Constrained Tokens for Manipulating Database Queries

Brygg Ullmer †, Hiroshi Ishii, and Rober t J.K. Jacob††
MIT Media Laboratory, One Cambridge Center, 5FL, Cambridge, MA USA

{ ullmer, ishii, rjacob} @media.mit.edu

Abstract: We present a new approach for using physically constrained tokens to express, manipulate, and
visualize parameterized database queries. This method extends tangible interfaces to enable interaction with
large aggregates of information. We describe two interface prototypes that use physical tokens to represent
database parameters. These tokens are manipulated upon physical constraints, which map compositions of
tokens onto interpretations including database queries, views, and Boolean operations. We propose a framework
for “ token + constraint” interfaces, and compare one of our prototypes with a comparable graphical interface in a
preliminary user study.

† Current affiliation: Visualization Dept., Zuse Institute Berlin (ZIB), ullmer@zib.de
†† Current affiliation: Computer Science Dept., Tufts University, jacob@cs.tufts.edu

Keywords: tangible interfaces, dynamic queries, databases

1 Introduction
A growing number of tangible user interfaces (TUIs)
have worked to give physical form to digital
information. Most TUIs make a direct “one-to-one”
mapping between physical objects and elements of
digital information. However, physical world prag-
matics can limit the scalability of this approach in
several respects.
 First, this approach can limit the number of
information elements a TUI can practically be used to
manipulate. While spreadsheets and databases of
hundreds, thousands, or more digital elements are
common, manipulating such numbers of discrete
physical elements might often become burdensome.
Second, one-to-one mappings of physical objects to
data elements can also limit the kinds of operations a
TUI can support. While digital operations over large
aggregates of information are common – e.g., query,
sort, group, etc. – such operations may be difficult to
express, view, and build upon if data elements are
individually embodied.
 Instead of using physical objects to directly
represent individual information elements, we use
physical objects to indirectly reference information by
representing expressions that hold over large aggre-
gates of information. Specifically, we use physical
tokens to represent database parameters. Placing
these tokens within “query racks” expresses queries

����

����

����������	
����	�
��
������������������������	����
�������
� � ��� 	�
 � �

� � ��� 	

 � �

� �� � �

 � ��
 �

 �
 � ����
�� ����

� �
 ����
 �� �

Figure 1: Parameter wheels and visualizations.

composed of the corresponding parameters, and
invokes visualizations of the parameter distributions.
The physical manipulation of these tokens modifies
parameter thresholds, expresses Boolean relation-
ships, and controls visualizations of query results.

 We have implemented two prototypes of these
“ tangible query interfaces.” We believe our approach
extends tangible interfaces to leverage computers’
capabilities for processing large aggregates of digital
information, while preserving the benefits of TUIs
such as support for two-handed interaction, colocated
collaboration, and provision of strong physical and
cognitive affordances.
 We begin with an overview of our interfaces’
functions. We propose a framework for “ token +
constraint” TUIs that describes both our interface and
earlier systems, and compare one of our prototypes
alongside a GUI in a preliminary user study.

2 Functionality Overview
We begin by describing the use of our query interface
prototypes for a real estate application. These build
upon ideas first developed in the GUI “Dynamic
Homefinder” prototype illustrating dynamic queries
(Williamson and Shneiderman, 1992).

2.1 Parameter wheels
In the first example, “parameter wheels” are used to
explore homes in a real estate database using our
system (Figures 1, 2, 3). These wheels are small
cylindrical tokens embedded with RFID tags and
faced with cardstock labels. Nine parameter wheels
are present, each representing fields of the database.
Six wheels represent continuous parameters like price
and acreage (hectares). Three wheels represent
discrete parameters like building types and features.
 These parameter wheels are used within a
“query rack” made up of a series of “query pads,”
each with a receptacle for a parameter wheel (Figures
1, 2, 3). Placing a wheel upon a pad expresses the
associated parameter as part of the active query.
 A display surface is located adjacent to the
query rack. Two visualizations appear on this sur-
face: geographical and scatterplot views. A projector
illuminates both the display surface and the query
rack, including its embedded query pads. The two
query pads on the left are adjacent to and associated
with the ‘X’ and ‘Y’ axes of the scatterplot. The right
pads offer space for additional parameters.

Figure 2: Query rack and pads.
The two leftmost pads map to the scatterplot’s Y and
X axes, respectively. Here, the Y axis pad is empty,
while the X axis pad contains a parameter wheel.

 An example interaction might begin by picking
up the “price” parameter wheel and placing it upon
the “X axis” query pad. In response, the “price” label
and value range are illuminated on the query pad
surrounding the wheel, and a 1D plot of price appears
on the scatterplot (Figure 3a). The locations of all of
the homes meeting these criteria are also displayed on
the geographical view. The “price” wheel initially
specifies the parameter range spanning from the least

expensive homes to the middle-cost homes. The
upper bound can be adjusted by rotating the wheel
within the query pad. The query pad, scatterplot, and
geographical views update correspondingly. The two
leftmost pads map to the scatterplot’s Y and X axes.
Here, the Y axis pad is empty, while the X axis pad
contains a parameter wheel.
 To add a second parameter criterion to the
query, an “acreage” wheel is placed upon the Y axis
query pad. The Y axis of the scatterplot updates
accordingly, yielding a 2D plot of acreage against
price. To identify (e.g.) low-priced houses sited upon
relatively large properties, the user can manipulate
both wheels using his two hands. The scatterplot
indicates available prospects, while the geographical
view indicates their corresponding locations (here, on
the periphery of the city). These parameters are
implicitly joined with a Boolean AND relation.

Figure 3a,b: Manipulation of parameter wheels.

 In some cases it is desirable to spot trends in the
data. Such patterns are not immediately visible with
the price and acreage pairing. Replacing the acreage
token with the “square footage” wheel, a clear
correlation becomes visible in the scatterplot view.
 Parameter wheels remain persistently bound to
their associated value ranges when moved to or from
the query rack. This eases change of view (e.g.,
swapping scatterplot axes), and simplifies queries
involving a third or fourth parameter. For example,
the acreage wheel can be returned to the query rack
alongside the price and square footage wheels. While
the third token is not separately represented on the
scatterplot, its impact is shown through highlighting
within the geographical and scatterplot views.
 Several wheels are associated with discrete
parameters. For instance, one wheel is associated
with different building types. Turning this wheel to
select “patio homes” shows clustering in certain areas
of the city. Similarly, selecting “mobile homes”
exposes locations on the city’s periphery. The
discrete-valued parameter wheels can easily be comb-
ined with continuous-valued wheels. For example,
placing the “building type” and “price” wheels upon
the X and Y axes shows clusterings of prices
associated with different housing types (Figure 4a).

When price is replaced with acreage or square foot-
age, different patterns are visible.
 A second discrete-valued parameter wheel
selects for area high schools. As expected, this
parameter shows strong clustering corresponding to
different school districts. A final discrete-valued
wheel selects for building “ features;” e.g., waterfront
proximity. This parameter also illustrates clustering
around lakes and other geographical features.

Figure 4a,b: Scatterplot views composed of discrete +
continuous and two discrete parameter wheels.

 Finally, discrete-valued parameter wheels may
be combined with each other. Figure 4a illustrates the
intersection of building features with school districts.
Here, districts with waterfront homes are visible.

2.2 Parameter bars
Our second prototype uses “parameter bars” to
provide another approach for expressing queries.
While parameter wheels are faced with passive labels,
parameter bars are embedded with active displays.
These displays indicate the identity of the active
parameter and a value histogram. Parameter bars can
be dynamically bound to new parameters by placing
them near binding points on a GUI monitor, with their
internal displays updating accordingly.

Figure 5: Parameter bars; clustering of costly homes.

 Parameter bars are embedded with double
sliders, allowing the modification of both the upper
and lower bounds of a target parameter range. The
combination of embedded displays and manipulators
allows parameter wheels to be reconfigured while
away from the query rack. This is potentially useful
in group meetings, among other contexts.
 As an example, a parameter bar representing the
price of real estate properties can be placed onto a

query rack. As with the parameter wheels, corre-
sponding scatterplot and geographical results are dis-
played. Unlike parameter wheels, both the lower and
upper bounds of the price distribution can be con-
trolled. This supports the identification of patterns
such as spatial clusterings of high-priced homes.
 A second parameter bar can be added to the
query rack. When these bars are adjacent, a Boolean
“AND” operation is applied, as in the case of
parameter wheels. When the parameter bars are
spatially separated on the rack (which is detented to
support stable positioning and haptic feedback), an
“OR” operation is instead applied (Figure 6).

Figure 6: Boolean relations between parameter bars.

 The “OR” operation has special value for
comparing the distributions of different parameters.
For example, when an “OR” relation between high-
priced and high-acreage homes is displayed, the
original “price” clustering is visible alongside the
distribution associated with the acreage parameter.
 Where this visualization has meaning in the real
estate domain, it takes on special value for other
kinds of datasets; e.g., to mutual fund databases.
Here, it is valuable to compare the one-year and ten-
year returns for multiple funds. It is desirable to
simultaneously view both distributions, which is
facilitated by the “OR” relation and visualization. As
particular funds are identified, the “AND” conjunc-
tion aids identification of this relationship with other
variables (e.g., risk assessment).

3 Token + Constraint Approach
We now consider how these new interfaces fit into the
larger space of tangible interfaces. Much of the TUI
design space can be divided into several high level
approaches. In the interactive surfaces paradigm,
physical objects are manipulated upon an augmented
workbench or wall (e.g., Wellner, 1993; Rauterberg
et al., 1997; Underkoffler and Ishii 1999). The
constructive assemblies approach draws inspiration
from LEGO™ and building blocks, building upon the
interconnection of modular physical elements (e.g.,
Aish et al., 2001). These are illustrated in Figure 7.

 A third, less populated approach can be
described as “ tokens + constraints.” In our interpre-
tation, tokens are discrete, spatially reconfigurable
physical objects that represent digital information or
operations. Constraints are confining regions within
which tokens can be placed. Constraints are mapped
to digital operations or properties that are applied to
tokens placed within their confines. Constraints are
often embodied as physical structures that mechan-
ically channel how tokens can be manipulated, often
limiting their movement to a single physical dimen-
sion. Alternately, constraints can be visually express-
ed without a mechanically defining perimeter, as with
the cells found in many board games.

Figure 7a,b,c: Major TUI approaches: interactive

surfaces, tokens+constraints, constructive assemblies.
 This paper focuses on the use of physical,
mechanically confining constraints within tangible
interfaces. The manipulation of tokens within these
constraints – token entrance, exit, translation, and
rotation – is mapped to a variety of computational
interpretations. Taken separately, tokens and con-
straints are not individually “actionable.” Combined
together, tokens and constraints represent fully
formed, manipulable computational expressions.
 Token+constraint TUIs offer a kind of middle
ground between interactive surfaces and constructive
assemblies (Figure 7b). As discussed in related terms
within (Maclean et al. 2000), token + constraint
interfaces offer a balance between continuous and
discrete styles of manipulation. Interactive surfaces
TUIs have usually emphasized continuous styles of
interaction, framing interaction in terms of continuous
positions and orientations of physical tokens.
Alternately, TUIs employing constructive assemblies
emphasize discrete relationships between physical
objects, generally framed in terms of connection,
disconnection, and topology. In contrast, token +
constraint systems lend themselves to supporting both
continuous and discrete forms of manipulation.
 These discrete and continuous forms of mani-
pulation occur within two distinct phases of inter-
action: associate and manipulate (Figure 8). In the
associate phase, tokens are associated with specific
constraints. This is done by placing the token within
the physical confines of the constraint. This action
establishes a (discrete) physical relationship between
the token and constraint, and a computational rela-
tionship between the associated digital mappings. In

the second phase, tokens are continuously manipu-
lated within the constraints’ confines, and interpreted
with respect to the constraint and/or other tokens.

associate

manipulate

Figure 8: Phases of interaction with tokens + constraints.

4 Token + Constraint Mappings
The token+constraint approach gives physical form
not only to digital information, but also to aspects of
the “syntax” for combining these physical/digital
elements together. Physical constraints help to
enforce consistency by mechanically restricting the
physical relationships that objects can express. While
not eliminating the possibility of meaningless
expressions, token+constraint systems physically
express to users something about the kinds of
interactions the interface can (and cannot) support.

In the tangible query interfaces, four kinds of
operations are associated with the query rack
constraints: query, view, selection+assignment, and
Boolean operations. These correspond to the
following physical/digital mappings:

1) physical presence → query parameter assertion
2) physical placement → view selection
3) physical rotation → parameter value selection
4) physical adjacency → Boolean operation

The query and view operations are both invoked
during the associate phase of interaction, while the
selection and Boolean operations are invoked during
the manipulate phase. To consider the query opera-
tion, the act of placing a token upon a query rack
invokes a “select… where…” operation in SQL (the
most common database query language). For exam-
ple, if a price token is placed on a query rack that is
associated with a real estate database, a query like:

select bldg_id where (price >
[price.min] AND price < [price.max])

is evaluated. If multiple tokens are on the rack,
associated parameters are used as “where” operands.

The query interface mappings are specific
instances of a broader family of possible token+con-
straint mappings. These are summarized in Figure 9.
The presence relationship is usually expressed in the
associate phase of interaction, while other relation-

ships are often expressed in the manipulate phase.
Shaded elements are used in the query interfaces.

These relationships and mappings illustrate the
range of digital operations that can be expressed by

Physical
relationships

Interaction
Event Digital interpretations

Presence Add/Remove Logical assertion; activation; binding
Position Translate/Rotate Geometric; indexing; scalar
Sequence Order change Sequencing; query ordering
Proximity Prox. change Relationship strength (e.g., fuzzy set)

Connection Connect/Discon. Logical flow; scope of influence
Adjacency Adjacent/NAdj. Booleans; axes; other paired relations

Figure 9: Grammars for mapping token+constraint
compositions to digital interpretations.

token+constraint approaches. The same relationships
also can be expressed upon interactive surface TUIs,
which usually possess a superset of the physical
degrees of freedom of physically structured approach-
es. However, the use of physical constraints offers a
number of benefits, including:

 1) increased passive haptic feedback;
 2) increased prospects for active force feedback;
 3) decreased demands for visual attention;
 4) increased kinesthetic awareness;
 5) increased prospects for embedded uses; and
 6) flexible, widely accessible sensing technologies.

5 Related Work
Tangible query interfaces broadly involve the

physical modeling of logical relationships. We share
some of the goals of architectural interfaces begun by
Aish and Frazer in the late 1970s (Aish et al., 2001).
Aish believed that physical/digital tools might help
people to communicate, negotiate, and explore alter-
natives in face-to-face contexts. We share this opti-
mism, and extend support for abstract information.

Several systems have developed interfaces for
physically expressing software programs; e.g., (Perl-
man, 1976; Suzuki and Kato, 1993). Where these
systems physically represented elements of proce-
dural or functional languages, we have followed a
declarative model, mapping object configurations to
SQL expressions that are continuously evaluated. We
believe this extends the expressiveness achievable
with a small number of objects.

Among recent tangible interface research, we
build upon the mediaBlocks (Ullmer et al., 1998),
LogJam (Cohen et al., 1999), and ToonTown (Singer
et al., 1999) systems, which all drew inspiration from
the work of Bishop (Polynor, 1995). The media-
Blocks authors also suggested (but did not develop)
the application of adjacency-based mappings to data-
base queries and Booleans in (Ullmer et al., 1998).

The Navigational Blocks (Camerata et al., 2002)
also developed a TUI for interaction with databases.
The system represents categories of a history appli-

cation with the faces of physical cubes. Our query
interfaces offer new support for continuous para-
meters, view descriptions, Boolean ‘OR’ operations,
and dynamic binding, among other advantages.

Our interface also has similarities to the DataTiles
system (Rekimoto et al., 2001). DataTiles used trans-
parent tiles to represent modular software elements,
including a parameter tile for simple queries. Data-
Tiles relied upon pen-based interaction with
underlying GUI applets, which contrasts with our em-
phasis on physical representation and manipulation.

Parameter wheels also share common ground with
the “ tagged handles” of (Maclean et al., 2000). Here,
RFID-tagged objects represent content such as digital
video sequences, and mate with force feedback docks
to provide haptic cues. This effort is highly
complementary to our query interfaces.

Our work builds directly on the dynamic query
techniques of (Williamson and Shneiderman, 1992).
Several other GUIs have introduced techniques for
expressing Boolean relations within database queries
(e.g., Fishkin and Stone, 1995; Jones, 1998). Our
approach is also related to research on visual query
systems (or VQS), and has similarities to icon-based
VQS systems (Catarci et al., 1997).

More broadly, our query interfaces relate to the
area of visual programming. Our interfaces provide
workspaces where each physical action brings an
immediate interpretation and response by the system.
In this respect, our approach closely follows
Shneiderman’s principles of “direct manipulation.”

6 Implementation
Most of the systems' mechanical fabrication was
executed on a Universal Laser Systems 100 watt CO2
laser cutter, controlled by the CorelDRAW™
drawing program. Circuit boards were fabricated in-
house with a Roland Modela mini-mill, and designed
with TechSoft’s PCB software.

The parameter wheels are embedded with Philips
HiTag2 RFID tags, and sensed with an IB Tech-
nology reader multiplexed across four sensing coils.
Wheel rotation is sensed by a rotary potentiometer.
Sensing of the parameter bar levers is monitored by
slide potentiometers. The parameter bar displays use
tricolor LEDs and 120x32-pixel Seetron backlit LCD
displays. These components are controlled with
embedded Microchip PIC 16F876 microcontrollers
and programmed with the CCS C compiler. Power is
provided by rechargeable NiMH batteries. Query
racks are linked by RS232 serial cable to a host PC.

The parameter bars used a custom near-field
inductive communication scheme inspired by the
“Beads” of (Resnick et al., 1998). However, relia-

bility and speed were problematic. Dual-ported RFID
transponders would likely have been a better solution.

Projection was via a small 1024x768 pixel video
projector, oriented via a desk-mounted mirror jig.
The main software was written in Java and run on a
two-processor PC. The database was hosted on a
Linux-based PostgreSQL server.

7 Preliminary User Study
To gain user feedback on our approach, we conducted
a preliminary user study comparing the parameter
wheels query interface with a GUI-based dynamic
queries interface. The study domain and task were
loosely modeled after the “HomeFinder” experiment
of (Williamson and Shneiderman, 1992), although
were conducted more informally. This earlier study
compared dynamic queries with text-based query
interfaces, and found both speed increases and user
preferences for the GUI technique.
 We believe that tangible query interfaces can
provide strong support for exploratory interaction
with data. To help support this claim, our experiment
explored three (informally framed) hypotheses:

 1) Tangible interfaces using physically constrained
tokens can provide a feasible approach for express-
ing simple queries. Since tangible query interfaces
are a new querying approach, usability claims benefit
from verification through the user experience.

 2) TUIs elicit parallel two-handed interactions
within querying tasks. While support for two handed
interactions has been a frequent claim for TUIs, it
was not clear whether people would in practice use
both hands to control the TUI querying task.

 3) TUI is faster than GUI for a range of querying
tasks. We also believed that our TUI would be
quantitatively faster than comparable GUIs based
upon the dynamic queries approach. While we were
more interested in TUIs potential for contexts such as
colocated collaboration, single-user performance
seemed the cleanest metric for an initial comparison.

6.1 Exper imental Setup and Task
Figures 10 and 11 illustrate the experimental setup.
At the top of the display surfaces, we asked users to
express queries involving two to four continuous
parameters, drawing from a pool of six parameters.
These were manipulated using both the four-cell
parameter wheels query rack and a range slider-based
GUI (Williamson and Shneiderman, 1992). For the
TUI, this ensured the need for users to spatially
reconfigure parameter wheels.
 The experimental tasks required users to balance
between multiple competing criteria. The satisfaction
of these criteria was quantified with a simple scoring

algorithm, and compared with a “ target score” that
must be satisfied to complete the task. Current and
target scores were displayed as graphical bars in the
upper right of the display surfaces.

Figure 10: TUI, GUI task setups.

Figure 11: Parameter wheel, GUI range slider settings.

 We decided to remove the “scatterplot” feature
for our study. Since this was the primary TUI
visualization, this was a difficult decision. However,
it was unclear how to provide similar support for axis
selection using existing GUI techniques.
 Our experiment included 24 individual tasks,
with the TUI and GUI reset after each task. We stag-
gered interaction with the TUI and GUI in each
session, and conducted the first half of the experiment
as training tasks. We had 16 subjects, 9 male and 7
female, and used a counterbalanced, within-subjects
design. Subjects were from outside our department.

6.2 Exper imental Results
The tangible interface performed well in our experi-
ment. However, we encountered two unexpected
issues. First, we observed that users interacted with
the TUI and GUI interfaces in qualitatively different
ways. With the TUI, users almost always began with
a “setup phase” (corresponding to the “associate”
phase), bringing all necessary tokens onto the query
rack before manipulating individual thresholds. This
“setup time” made a major performance impact – on
the order of 30% of overall task completion time.
 Secondly, to our surprise, a few tasks appeared
more difficult to complete on the TUI than the GUI.
In these tasks, the data distributions required users to
configure parameters to values substantially outside
of the requested range. TUI users tended to keep
their eyes on the score bar, and were often trapped in
“ local minima.” In contrast, GUI users were forced
to constantly look at the parameter values. While
many users complained about this GUI aspect, it
appeared beneficial in this case. We believe that our

scatterplot visualization, and also haptic feedback
indicating parameter bounds and density, would have
helped TUI users with this problem.
 In raw results, the average GUI task completion
time was faster than for TUI, but without statistical
significance. TUI performance was substantially
slowed by the setup times and by the two unusual
tasks. Setup time slowed TUI performance by 30%,
while the two unusual tasks slowed the cumulative
average time by 40%.
 In responses from the user surveys, user
preferences were split: 8 users preferred the TUI, and
7 preferred the GUI. The average preference was 4.5
on a 7 point scale, weakly favoring the TUI. The
preference histogram followed a bimodal distribution.
Seven of the sixteen users had a moderate or strong
preference for the tangible interface, while all but one
users favoring the GUI had a weak preference. Also,
subjects used only the geographical visualization;
several were shown the scatterplot visualization after
the study, and all responded with enthusiasm.
 Subjects who preferred the tangible interface felt
that the TUI was faster, and vice versa. The users
ranged from 19 to 45 years of age, averaging roughly
27. The TUI was more popular with younger users
(averaging 23, vs. 30 for users preferring GUIs).
Interestingly, of the subjects who rated themselves in
the top two tiers of computer expertise, more than
half preferred the TUI.
 We also asked users about the interfaces’ ease of
learning, ease of use, and their likelihood to support
effective interaction with real databases. On average,
users rated the TUI more highly on each count. We
were pleased by the “effectiveness” result, given
previous success of the GUI method.
 Returning to the original study hypotheses:
(1) The feasibility hypothesis was confirmed. Six-

teen users completed 189 of the 192 TUI tasks.
(2) The two-handed hypothesis was confirmed. 80%

of the users used both hands. More than 40%
made unprompted mention of simultaneous two-
handed manipulation as a major strength.

(3) The performance hypothesis was not confirmed.
But on average, users preferred using the TUI.

8 Discussion
8.1 Compar ison with graphical inter faces
One of the most basic questions about our approach is
“why not use a GUI?” Graphical interfaces can
support all of our system’s abstract functionality.
Also, textual and graphical query interfaces are
clearly preferable in many contexts.
 We believed the TUI would help users focus
upon the “objects of interest” – in this case, the para-

meters of the query task. The TUI arguably offers
more “direct” manipulation than the GUI, allowing
better use of kinesthesia, with eyes focused on the
scoring results. We also expected that parallel two-
handed manipulation of parameter wheels would
contribute toward a TUI performance increase.
 In practice, while the TUI met with positive user
feedback, the quantitative performance comparison
with the GUI was inconclusive. The TUI perfor-
mance shortcomings in the two “unusual tasks” may
reflect the importance of tighter integration of para-
meter tokens with the results display, including use of
haptic feedback techniques.
 The impact of the setup/associate phase has
several implications. First, inclusion of the scatter-
plot within the study would likely have benefited TUI
performance. Second, most GUIs also require a
“setup phase” in which active parameters are deter-
mined and views are defined. GUIs often afford
representation of more parameters than TUIs, leading
to our study design. However, including a setup
phase for GUI tasks would be a more equal compar-
ison, and would lead to stronger TUI results.

8.2 Mapping and integration alternatives
One of the largest challenges for TUIs is the design of
strong physical/digital mappings. For the query inter-
faces, three such issues were particularly evident:
view composition, query composition, and the inte-
gration of physical and graphical elements.
 Our parameter wheels used a fixed mapping
between pads and scatterplot axes, while the para-
meter bars’ mapping was based on token ordering.
We felt the fixed mappings worked quite well. While
the order-based mapping functioned, we felt it was a
weaker approach. This was partly because the wheel
rack’s fixed pads simplified rapid composition of
views; and partly because the parameter bar mapping
was overloaded with the Boolean interpretation.
 We believe the adjacency-based Boolean map-
ping is potentially valuable, especially for contexts
like our mutual fund example. However, its utility
depends upon the supporting visualizations. Often,
the simpler AND-only mapping may be preferable.
 Our current results display is visually biased and
somewhat segregated from the rest of the TUI. One
path for improvement could be to combine our inter-
face with other TUIs with strong inherent visual map-
pings. For example, our interfaces could query
census information in combination with the Urp urban
planning simulator (Underkoffler and Ishii, 1999),
displaying query results directly onto Urp’s graphical
workbench. Here, our racks could offer a kind of
TUI “widget” as an element of more complex TUIs.

8.3 Scope of database functionality
Our query interfaces support the common “select-
from-where” form of SQL queries, including para-
meter selection, range selection, Boolean operations,
and view description. While a small subset of the full
SQL language, we believe this is sufficient for
meaningful interaction in a number of content
domains. It is also a superset of dynamic queries and
other prior query approaches.
 We have also developed a “dataset container”
that is used to reference source datasets, and to save
and compare the results of database queries. These
functions seem important for further development.
 Another important database operation is the
“ join” operation. Our system internally joins para-
meters from different tables following the “universal
relations” approach. We have also considered alter-
natives for interactive joins by embodying “views” as
physical objects, and expressing visual joins through
the stacking of view objects.
 Parameter tokens can also be encoded with
cryptographic IDs, giving them interesting potential
for interactions involving sensitive information (e.g.,
in meetings between competing organizations).

8 Conclusion
We have presented a system for physically expressing
and manipulating parameterized database queries.
Our approach builds upon physical objects that
represent digital parameters, rather than specific data.
We have shown how these tokens can be manipulated
to bind them to parameters; to assert these parameters
as parts of queries; to change parameter value ranges;
to express Boolean relations; and to describe views of
query results.
 Where previous tangible interfaces have devel-
oped “containers” for specific data elements, our
parameter tokens describe relations and logical
constraints that are computed over large sets of infor-
mation. We believe this physical embodiment of
declarative expressions scales to support interaction
with large aggregates of information.
 We believe these approaches are relevant not
only to the broad space of database applications, but
also to other tasks that involve the manipulation of
information aggregates and the modeling of abstract
relationships. These include physical and behavioral
simulations, the configuration of complex systems,
and information visualization.

Acknowledgements
We thank many people for their support, including Zachary
Malchano, Anna Lee, James Patten, Jennifer Yoon,
Nicholas Fahey, Axel Kilian, Dan Maynes-Aminzade, Gian
Pangaro, Hannes Vilhjálmsson, Lisa Lieberson, and the

study subjects. We thank the MIT Media Lab’s TTT and
Digital Life for support of this research, and ZIB and the
EC GridLab project for subsequent support.

References
Aish, R., Frankel, J., Frazer, J., Patera, A., and Marks, J.

(2001). Computational Construction Kits for
Geometric Modeling and Design. In Proc. of
I3D’01, pp. 125-128.

Camerata, K., Do, E., et al. 2002. Navigational Blocks:
Tangible Navigation of Digital Information. In
Extended Abstracts of CHI’02, pp. 752-753.

Catarci, T., Costabile, M., et al. 1997. Visual Query Sys-
tems for Databases: A Survey. In Journal of Visual
Languages and Computing, 8(2), 1997, pp. 215-260.

Cohen, J., Withgott, M., and Piernot, P. 1999. Logjam: A
Tangible Multi-Person Interface for Video Logging.
In Proc. of CHI’99, pp. 128-135.

Fishkin, K. and Stone, M. 1995. Enhanced Dynamic Quer-
ies via Movable Filters. In Proc. of CHI’95, pp.
415-420.

Jones, S. 1998. Graphical Query Specification and
Dynamic Results Preview for a Digital Library. In
Proc. of UIST’98, pp. 143-151.

MacLean, K., Snibbe, S., and Levin, G. 2000. Tagged
Handles: Merging Discrete and Continuous Manual
Control. In Proc. of CHI’00, pp. 225-232.

Perlman, R. 1976. Using Computer Technology to Provide
a Creative Learning Environment for Preschool
Children. MIT Logo Memo #24, 1976.

Polynor, R. 1995. The Hand That Rocks the Cradle. I.D.,
May/June 1995, pp. 60-65.

Rauterberg, M., Fjeld, M., et al. 1997. BUILD-IT: a
computer vision-based interaction technique for a
planning tool. In Proc. of HCI’97, pp. 303-314.

Rekimoto, J., Ullmer, B., and Oba, H. 2001. DataTiles: A
Modular Platform for Mixed Physical and Graphical
Interactions. In Proc. of CHI’01, pp. 269-276.

Resnick, M., Martin, F., et al. 1998. Digital Manipulatives:
New Toys to Think With. In Proc. of CHI’98.

Singer, A., Hindus, D., et al. 1999. Tangible Progress: Less
is More in Somewire Audio Spaces. In Proc. of
CHI’99, pp.104-111.

Suzuki, H. and Kato, H. 1993. AlgoBlock: a Tangible Pro-
gramming Language, a Tool for Collaborative Learn-
ing. In Proc. of 4th ELC, 1993, pp. 297-303.

Ullmer, B., Ishii, H., and Glas, D. 1998. mediaBlocks: Phy-
sical Containers, Transports, and Controls for Online
Media. In Proc. of SIGGRAPH’98, pp.379-386.

Underkoffler, J., and Ishii, H. 1999. Urp: A Luminous-
Tangible Workbench for Urban Planning and
Design. In Proc. of CHI’99, pp. 386-393.

Wellner, P. 1993. Interacting with paper on the Digital
Desk. In Comm. of the ACM. July 1993, pp. 86-96.

Williamson, C., and Shneiderman, B. 1992. The Dynamic
HomeFinder: Evaluating Dynamic Queries in a Real-
Estate Information Exploration System. In Proc. of
SIGIR’92, pp. 339-346.

